Embroidering in Banach Space

Alexander Adam Azzam
The University of Nebraska - Lincoln

with S. Heinecke (MIT), S. Rasco (SUNY - Potsdam), O. Zatarain (UAEH)
A Banach Space is a complete normed vector space.
A **Banach Space** is a complete normed vector space. We can

- measure **length** of a vector $\|x\|$.
- compute **distance** between vectors $\|x - y\|$.
- determine **convergence** of a Cauchy sequence of vectors.

Throughout this talk, \mathcal{X} denotes a separable Banach space, endowed with the norm topology.
Some Preliminaries.

A **Banach Space** is a complete normed vector space.

Examples:

- All finite dimensional vector spaces.
- If X is a compact Hausdorff space,

$$C(X) = \{ f : X \to \mathbb{C} : f \text{ is continuous} \}$$

equipped with the norm $\| f \| = \sup \{ |f(x)| : x \in X \}$

- The set

$$\ell^p = \left\{ (x_n) \in \mathbb{C}^\mathbb{N} : \sum_{n=1}^{\infty} |x_n|^p < \infty \right\}$$

equipped with the norm $\| (x_n) \|^p = \sum_{n=1}^{\infty} |x_n|^p$.
A function $T : \mathcal{X} \rightarrow \mathcal{X}$ is a \textbf{linear operator} if

$$T(x + cy) = T(x) + cT(y)$$

for all $x, y \in \mathcal{X}$ and $x \in \mathbb{C}$.

We say that T is \textbf{bounded} provided that

$$\sup\{\|Tx\| : \|x\| = 1\} < \infty$$
Let S be a non-empty subset of \mathcal{X}, with closure denoted \overline{S}.

- If S contains a non-empty open set, we say S has interior.
- If \overline{S} has interior, then S is somewhere dense.
- If $\overline{S} = \mathcal{X}$, then S is (everywhere) dense.
Suppose \mathcal{M} is an infinite-dimensional closed subspace of \mathcal{X}.

Definition

An operator T is said to be \mathcal{M}-hypercyclic if there exists some $x \in \mathcal{X}$ for which

$$M \cap \text{Orb}(T, x) = M \cap \{T^n(x) : n \geq 0\}$$

is dense in \mathcal{M}.

- When T is \mathcal{X}-hypercyclic, we simply say T is hypercyclic.
Theorem (Rolewicz 1969)
\[\ell^2 \text{ supports a hypercyclic operator; } 2B \ (B \text{ is the backward shift}). \]
Existence.

Theorem (Rolewicz 1969)

\(\ell^2 \) supports a hypercyclic operator; \(2B \) (\(B \) is the backward shift).

Theorem (Ansari 1997, Bernal 1999)

Every infinite-dimensional Banach space supports a hypercyclic operator.
Existence.

Theorem (Rolewicz 1969)

\[\ell^2 \text{ supports a hypercyclic operator; } 2B \ (B \text{ is the backward shift}). \]

Theorem (Ansari 1997, Bernal 1999)

Every infinite-dimensional Banach space supports a hypercyclic operator.

Theorem (Grivaux 2003)

If \(V \) is a countable, linearly independent dense subset of \(X \), then there exists an bounded operator \(T \) and a vector \(x \) so that \(\text{Orb}(T, x) = V \).
Existence.

<table>
<thead>
<tr>
<th>Theorem (Rolewicz 1969)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓ^2 supports a hypercyclic operator; $2B$ (B is the backward shift).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Ansari 1997, Bernal 1999)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every infinite-dimensional Banach space supports a hypercyclic operator.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Grivaux 2003)</th>
</tr>
</thead>
<tbody>
<tr>
<td>If V is a countable, linearly independent dense subset of X, then there exists an bounded operator T and a vector x so that $\text{Orb}(T,x) = V$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Enflo 1976, Read 1984)</th>
</tr>
</thead>
<tbody>
<tr>
<td>There exists a Banach space X and a linear operator $T : X \rightarrow X$ so that $\text{Orb}(T,x)$ is dense for every $x \in X$.</td>
</tr>
</tbody>
</table>
A motivating question.

Given a operator T, where can $\text{Orb}(T,x)$ be dense?
- Dense only in the unit ball?
- Dense only in a subspace?
- To what degree can I prescribe the closure of an operator’s orbit?
Theorem (Bourdon-Feldmen 2003)

Suppose that \mathcal{X} is a Banach space, and that $T : \mathcal{X} \to \mathcal{X}$ a linear operator. If $\text{Orb}(T,x)$ is somewhere dense in \mathcal{X}, then $\text{Orb}(T,x)$ is dense in \mathcal{X}.
Question:

- If \(\text{Orb}(T,x) \cap M \) is somewhere dense in \(M \), then is \(\text{Orb}(T,x) \cap M \) dense in \(M \)?
Are somewhere dense orbits in M dense in M?

Question:
- If $\text{Orb}(T,x) \cap M$ is somewhere dense in M, then is $\text{Orb}(T,x) \cap M$ dense in M?

Theorem

*Let \mathcal{X} be a separable Banach space and M an infinite dimensional. For each non-empty subset U, open relative to M, there exists a bounded operator T with $\overline{M \cap \text{Orb}(T,x)} = \overline{U}$.***
The Strategy

Want to sew the orbit of T through M but “embroider” only U.

We’ll construct a countable, dense, linearly independent subset V of X that intersects M only in a dense subset of U.

Use Grivaux’s theorem to construct a bounded linear operator whose orbit is precisely V.

Theorem (Grivaux’s Theorem)

If V is a countable linearly independent dense subset of X, then there exists an bounded operator T and a vector x so that $\text{Orb}(T,x) = V$.

Embroidering in Banach Space
Want to sew the orbit of T through M but “embroider” only U.

We’ll construct a countable, dense, linearly independent subset V of X that intersects M only in a dense subset of U.

Theorem (Grivaux’s Theorem)

If V is a countable linearly independent dense subset of X, then there exists a bounded operator T and a vector x so that $\text{Orb}(T, x) = V$.

Embroidering in Banach Space
The Strategy

Want to sew the orbit of T through M but “embroider” only U.

1. We’ll construct a countable, dense, linearly independent subset V of \mathcal{X} that intersects M only in a dense subset of U.

2. Use Grivaux’s theorem to construct a bounded linear operator whose orbit is precisely V.

Theorem (Grivaux’s Theorem)

If V *is a countable linearly independent dense subset of* \mathcal{X}, *then there exists an bounded operator* T *and a vector* x *so that* $\text{Orb}(T, x) = V$.
Proof. Assume that X is a separable Banach space. Then the norm topology is second countable.

- Let $\{B_n : n \in \mathbb{N}\}$ be a countable base for the norm topology.
- Let $\{U_n : n \in \mathbb{N}\}$ be a countable base for the subspace topology induced by U.
Let \(\{ B_n : n \in \mathbb{N} \} \) be a countable base for the norm topology.

Let \(\{ U_n : n \in \mathbb{N} \} \) be a countable base for the subspace topology induced by \(U \).

Pick nonzero \(x_1 \in U_1 \). Then

- \(\text{span}(x_1) \) and \(M \) have empty interior in \(\mathcal{X} \).
- Let \(\{ B_n : n \in \mathbb{N} \} \) be a countable base for the norm topology.
- Let \(\{ U_n : n \in \mathbb{N} \} \) be a countable base for the subspace topology induced by \(U \).

Pick nonzero \(x_1 \in U_1 \). Then
- \(\text{span}(x_1) \) and \(M \) have empty interior in \(\mathcal{X} \).
- Hence \(\text{span}(x_1) \cup M \) has empty interior, so we may pick

\[
y_1 \in B_1 \setminus (\text{span}(x_1) \cup M)
\]
Suppose $n > 1$ and for all $k < n$, that $x_1, y_1, \ldots, x_k, y_k$ have been chosen so that

(i) $x_k \in U_k$ and $y_k \in B_k \setminus M$.

(ii) $\{x_i, y_i : 1 \leq i \leq k\}$ is linearly independent.

Since $\text{span}\{x_i, y_i : 1 \leq i \leq n\}$ is finite dimensional, it has empty interior in M, so we may pick

$$x_n \in U_n \setminus \text{span}\{x_i, y_i : 1 \leq i \leq n\}$$
Suppose $n > 1$ and for all $k < n$, that $x_1, y_1, \ldots, x_k, y_k$ have been chosen so that

(i) $x_k \in U_k$ and $y_k \in B_k \setminus \mathcal{M}$.

(ii) $\{x_i, y_i : 1 \leq i \leq k\}$ is linearly independent.

Since $\text{span}\{x_i, y_i : 1 \leq i \leq n\}$ is finite dimensional, it has empty interior in \mathcal{M}, so we may pick

$$x_n \in U_n \setminus \text{span}\{x_i, y_i : 1 \leq i \leq n\}$$

Since $\text{span}\{x_i, y_j : 1 \leq j < i \leq n\} \cup \mathcal{M}$ has empty interior in \mathcal{X}, we may pick

$$y_n \in B_n \setminus (\text{span}\{x_i, y_j : 1 \leq j < i \leq n\} \cup \mathcal{M})$$
By induction, this furnishes a countable linearly independent set dense V in \mathcal{X} so that

$$V \cap M = \{x_i : i \in \mathbb{N}\}$$

whose closure is U. By Grivaux’s Theorem, there exists an operator $T : \mathcal{X} \to \mathcal{X}$ and a vector x with $\text{Orb}(T, x) = V$. But then $\text{Orb}(T, x) \cap M = \{x_i : i \in \mathbb{N}\}$, and so

$$\overline{\text{Orb}(T, x) \cap M} = \overline{\{x_i : i \in \mathbb{N}\}} = \overline{U}$$

as desired.
Embroidering in (in an infinite-dimensional closed subspace of an infinite dimensional) **Banach Space** (with the orbit of a bounded linear operator).
Embroidering in Banach Space
Embroidering in locally convex topological vector spaces.
Open Questions

- If T is \mathcal{X}-hypercyclic, does there exists a proper nontrivial closed subspace \mathcal{M} for which T is \mathcal{M}-hypercyclic?
Open Questions

- If T is \mathcal{X}-hypercyclic, does there exist a proper nontrivial closed subspace \mathcal{M} for which T is \mathcal{M}-hypercyclic?
- Can one classify all the proper nontrivial subspaces of \mathcal{X} for which an operator is \mathcal{M}-hypercyclic for (if any)?
Open Questions

- If T is X-hypercyclic, does there exist a proper nontrivial closed subspace M for which T is M-hypercyclic?
- Can one classify all the proper nontrivial subspaces of X for which an operator is M-hypercyclic for (if any)?
- The Invariant Subspace Problem (ISP) for Hilbert Space and...
Open Questions

- If T is \mathcal{X}-hypercyclic, does there exist a proper nontrivial closed subspace \mathcal{M} for which T is \mathcal{M}-hypercyclic?
- Can one classify all the proper nontrivial subspaces of \mathcal{X} for which an operator is \mathcal{M}-hypercyclic for (if any)?
- The Invariant Subspace Problem (ISP) for Hilbert Space and
- Yellow Complete Normed Vector Spaces (Bananach Spaces)
Dr. Blair Madore and Dr. Ruben Martínez-Avendaño
SUNY Potsdam/Clarkson Math REU
National Science Foundation
Dr. Robert Todd, Dr. Daniel Toundykov, and Dr. Lance Nielsen.
Acknowledgements

- Dr. Blair Madore and Dr. Ruben Martínez-Avendaño
- SUNY Potsdam/Clarkson Math REU
- National Science Foundation
- Dr. Robert Todd, Dr. Daniel Toundykov, and Dr. Lance Nielsen.
- **Viewers like you!**

Thanks!